Nimtz G. On virtual Phonons, Photons and Electrons. — Found. Phys. DOI 10.1007/s10701-009-9356-z, 2010

A macroscopic realization of the peculiar virtual particles is presented. The classical Helmholtz and the Schrödinger equations are differential equations of the same mathematical structure. The solutions with an imaginary wave number are called evanescent modes in the case of elastic and electromagnetic fields. In the case of non-relativistic quantum mechanical fields they are called tunneling solutions. The imaginary wave numbers point to strange consequences: The waves are non-local, they are not observable, and they are described as virtual particles. During the last two decades QED calculations of the solutions with an imaginary wave number have been experimentally confirmed for phonons, photons, and electrons. The experimental proofs of the predictions of non-relativistic quantum mechanics and the Wigner phase time approach for the elastic, electromagnetic and Schrödinger fields will be presented in this article. The results are zero time in the barrier and an interaction time (i.e. a phase shift) at the barrier interfaces. The measured tunneling time scales approximately inversely with the particle energy. Actually, the tunneling time is given only by the barrier boundary interaction time, as zero time is spent inside a barrier.

DOI:10.1007/s10701-009-9356-z
arXiv:0907.1611 [quant-ph]